Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Clinical Immunology ; Conference: 2023 Clinical Immunology Society Annual Meeting: Immune Deficiency and Dysregulation North American Conference. St. Louis United States. 250(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20243635

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a fatal pandemic viral disease caused by the severe acute respiratory syndrome corona virus type-2 (SARS-CoV-2). The aim of this study is to observe the associations of IL-6, SARS-COV-2 viral load (RNAemia), IL- 6 gene polymorphism and lymphocytes and monocytes in peripheral blood with disease severity in COVID-19 patients. This study was carried out from March 2021 to January 2022. RT-PCR positive 84 COVID-19 patients and 28 healthy subjects were enrolled. Blood was collected to detect SARS-COV-2 viral RNA (RNAemia) by rRT-PCR, serum IL-6 level by chemiluminescence method, SNPs of IL-6 by SSP-PCR, immunophenotyping of lymphocytes and monocyte by flow cytometry. Serum IL-6 level (pg/ml) was considerably high among critical patients (102.02 +/- 149.7) compared to severe (67.20 +/- 129.5) and moderate patients (47.04 +/- 106.5) and healthy controls (3.5 +/- 1.8). Serum SARS-CoV-2 nucleic acid positive cases detected mostly in critical patients (39.28%) and was correlated with extremely high IL-6 level and high mortality (R =.912, P < 0.001). Correlation between IL-6 and monocyte was statistically significant with disease severity (severe group, p < 0.001, and 0.867*** and critical group p < 0.001 and 0.887***). In healthy controls, moderate, severe and critically ill COVID-19 patients, IL-6 174G/C (rs 1800795) GG genotype was 82.14%, 89.20%, 67.85% and 53.57% respectively. CC and GC genotype had strong association with severity of COVID-19 when compared with GG genotype. Significant statistical difference found in genotypes between critical and moderate groups (p < 0.001, OR-10.316, CI-3.22-23.86), where CC genotype was associated with COVID-19 severity and mortality. The absolute count of T cell, B cell, NK cell, CD4+ T cells and CD8+ T cells were significantly decreased in critical group compared to healthy, moderate and severe group (P < 0.001). Exhaustion marker CD94/NKG2A was increased on NK cells and CD8+ cytotoxic T cell among critical and severe group. Absolute count of monocyte was significantly increased in critical group (P < 0.001). Serum IL-6, IL-6 174 G/C gene and SARS-CoV-2 RNAaemia can be used in clinical practice for risk assessment;T cell subsets and monocyte as biomarkers for monitoring COVID-19 severity. Monoclonal antibody targeting IL-6 receptor and NKG2A for therapeutics may prevent disease progression and decrease morbidity and mortality.Copyright © 2023 Elsevier Inc.

2.
Diagnostics (Basel) ; 13(9)2023 May 04.
Article in English | MEDLINE | ID: covidwho-2318509

ABSTRACT

A viral transport medium (VTM) was developed following the Centers for Disease Control and Prevention, USA (US-CDC) standard operating procedure (SOP) DSR-052-05 with necessary improvisation and was used for storing coronavirus disease 2019 (COVID-19) swab specimens. Considering Bangladesh's supply chain and storage conditions, improvisation was essential for extending sample storage time while retaining efficiency. In-house VTM was produced using Hank's balanced salt solution (HBSS) supplemented with 1% bovine serum albumin V (BSA), 0.5 µg /mL of gentamicin sulfate, and 100 µg/mL of fluconazole. The produced VTM composition, quality, sterility, specificity, and efficiency were verified in-house and through an independent contract research organization (CRO). An accelerated stability study projected that under the recommended temperature (4 °C), it would remain stable for four months and preserve samples for over a month. The real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) test detected the targeted N gene and ORF1ab gene from the VTM stored samples. Our VTM is equally as effective as the Sansure Biotech VTM in keeping SARS-CoV-2 RNA specimens detectable in rRT-PCR (100% sensitivity and specificity in random and blinded samples). In conclusion, the BRiCM VTM will make the battle against pandemics easier by effectively collecting and storing nasopharyngeal and oropharyngeal swabs for COVID-19 detection.

3.
Microbes and Infectious Diseases ; 1(3):140-152, 2020.
Article in English | Scopus | ID: covidwho-2248051

ABSTRACT

Background: Currently, the world is overwhelmed with coronavirus disease 2019 (COVID-19) caused by a highly virulent virus that causes influenza-like symptoms. University administrators are confronted with challenges concerning coronavirus preparedness and response for the resumption of safe campus activities. This study aimed at assisting Nigerian Universities in COVID-19 preparation and response. Methods: We adopted the susceptible-exposed infectious-recovered (SEIR) deterministic model to appraise the transmission of SARS-CoV-2 among university staff and students and evaluated the breadth of non-pharmaceutical intervention strategies required to safely return its community to campus. The mode was parameterized to fit the resident on campus situation. The frequencies of viral screening and testing, probabilistic sensitivity analysis of model parameter was explored in this study. Results: Weekly COVID-19 screening reduced the cumulative incidence by 15% and 55.7% among university staff and students, respectively. Polymerase chain reaction (PCR) testing delay of 2-,3-,4-and 7 days reduced overall semester incidence by 65.7%, 56.9%, 50.8% and 34.4% among students;23.5%, 22.8%, 20.5% and 16.9% among university staff. Conclusions: Our simulations have revealed that extensive testing of on-campus community population may be required to curb disease explosion. While cases of hospitalization and deaths may occur, community import of COVID-19 can be curtailed with effective testing, isolation, contact tracing and quarantine. A cost-effective solution such as pool testing was proposed in this study to decrease the overall resources needed for comprehensive on-campus testing. © 2020 The author (s). Published by Zagazig University.

4.
Biomedicines ; 11(3)2023 Feb 24.
Article in English | MEDLINE | ID: covidwho-2269068

ABSTRACT

Owing to the high transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, the capacity of testing systems based on the gold standard real-time reverse transcription-polymerase chain reaction (rRT-PCR) is limited. Rapid antigen tests (RATs) can substantially contribute to the prevention of community transmission, but their further assessment is required. Here, using 1503 nasopharyngeal swabs, we compared the diagnostic performance of four RAT kits (Abbott Panbio™ COVID-19 Ag Rapid Test, SD Biosensor Standard™ Q COVID-19 Ag Test, Humasis COVID-19 Ag Test, and SG Medical Acrosis COVID-19 Ag Test) to the cycle threshold (Ct) values obtained from rRT-PCR. The precision values, area under the curve values, SARS-CoV-2 variant detection ability, and non-SARS-CoV-2 specificity of all four kits were similar. An assay using the Acrosis kit had a significantly better positive detection rate with a higher recall value and cut-off value than that using the other three RAT kits. During the current COVID-19 pandemic, the Acrosis kit is an effective tool to prevent the spread of SARS-CoV-2 in communities.

5.
Clin J Am Soc Nephrol ; 2022 Aug 29.
Article in English | MEDLINE | ID: covidwho-2268571

ABSTRACT

Kidney replacement therapy (KRT) is a vital, supportive treatment for patients with critical illness and severe AKI. The optimal timing, dose, and modality of KRT have been studied extensively, but gaps in knowledge remain. With respect to modalities, continuous KRT and intermittent hemodialysis are well-established options, but prolonged intermittent KRT is becoming more prevalent worldwide, particularly in emerging countries. Compared with continuous KRT, prolonged intermittent KRT offers similar hemodynamic stability and overall cost savings, and its intermittent nature allows patients time off therapy for mobilization and procedures. When compared with intermittent hemodialysis, prolonged intermittent KRT offers more hemodynamic stability, particularly in patients who remain highly vulnerable to hypotension from aggressive ultrafiltration over a shorter duration of treatment. The prescription of prolonged intermittent KRT can be tailored to patients' progression in their recovery from critical illness, and the frequency, flow rates, and duration of treatment can be modified to avert hemodynamic instability during de-escalation of care. Dosing of prolonged intermittent KRT can be extrapolated from urea kinetics used to calculate clearance for continuous KRT and intermittent hemodialysis. Practice variations across institutions with respect to terminology, prescription, and dosing of prolonged intermittent KRT create significant challenges, especially in creating specific drug dosing recommendations during prolonged intermittent KRT. During the coronavirus disease 2019 pandemic, prolonged intermittent KRT was rapidly implemented to meet the KRT demands during patient surges in some of the medical centers overwhelmed by sheer volume of patients with AKI. Ideally, implementation of prolonged intermittent KRT at any institution should be conducted in a timely manner, with judicious planning and collaboration among nephrology, critical care, dialysis and intensive care nursing, and pharmacy leadership. Future analyses and clinical trials with respect to prescription and delivery of prolonged intermittent KRT and clinical outcomes will help to guide standardization of practice.

6.
Research Journal of Pharmaceutical, Biological and Chemical Sciences ; 14(1):27-31, 2023.
Article in English | EMBASE | ID: covidwho-2218114

ABSTRACT

Coronavirus disease 2019 is predominantly a respiratory illness that can cause hypercoagulable states with multisystem involvement. A single centre retrospective study was carried out in 37 patients who were diagnosed as COVID 19 with AKI from January 2022 to march 2022. Baseline D dimer was evaluated on hospital admission. Patients who were diagnosed with AKI on admission or during the stay in hospital were included in the study, In this study 37 COVID patients with AKI were analysed. Mean age of subjects was 62.51+/-15.18 years. Majority were in the age group 61-70 years (24.3%). 78.4% were males and 21.6% were females. Mean blood urea among subjects was 131.86+/-56.55(mmol/L), mean serum creatinine was 4.71+/-2.52(mg/dl). mean d dimer at admission was 3.701+/-4.48570(mg/L).70.3% of subjects had AKI at hospital admission and 29.7% developed AKI during hospital stay. Cause of AKI was prerenal in 89.2%, renal 18.9%,and post renal in 8.1%. D dimer levels >3.05 had highest validity in predicting the need for RRT with sensitivity 39.29%, specificity 100%, positive predictive value of 100% and negative predictive value of 34.6%. from this study it was concluded that d dimer has specificity of 100%in predicting the need of RRT Copyright © 2023, Research Journal of Pharmaceutical, Biological and Chemical Sciences.All Rights Reserved.

7.
Clin Chem Lab Med ; 61(6): 1123-1130, 2023 05 25.
Article in English | MEDLINE | ID: covidwho-2197302

ABSTRACT

OBJECTIVES: To describe a high-sensitivity SARS-CoV-2 antigen test that is based on the fully automated light-initiated chemiluminescent immunoassay (LiCA®), and to validate its analytical characteristics and clinical agreement on detecting SARS-CoV-2 infection against the reference molecular test. METHODS: Analytical performance was validated and detection limits were determined using different types of nucleocapsid protein samples. 798-pair anterior nasal swab specimens were collected from hospitalized patients and asymptomatic screening individuals. Agreement between LiCA® antigen and real-time reverse transcription polymerase chain reaction (rRT-PCR) was evaluated. RESULTS: Repeatability and within-lab precision were 1.6-2.3%. The C5∼C95 interval was -5.1-4.6% away from C50. Detection limits in average (SD) were 325 (±141) U/mL on the national reference panel, 0.07 (±0.04) TCID50/mL on active viral cultures, 0.27 (±0.09) pg/mL on recombinant nucleocapsid proteins and 1.07 (±1.01) TCID50/mL on inactivated viral suspensions, respectively. LiCA detected a median of 374-fold (IQR 137-643) lower levels of the viral antigen than comparative rapid tests. As reference to the rRT-PCR method, overall sensitivity and specificity were determined to be 97.5% (91.4-99.7%) and 99.9% (99.2-100%), respectively. Total agreement between both methods was 99.6% (98.7-99.9%) with Cohen's kappa 0.98 (0.96-1). A positive detection rate of 100% (95.4-100%) was obtained as Ct≤37.8. CONCLUSIONS: The LiCA® system provides an exceptionally high-sensitivity and fully automated platform for the detection of the SARS-CoV-2 antigen in nasal swabs. The assay may have high potential use for large-scale population screening and surveillance of COVID-19 as an alternative to the rRT-PCR test.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19 Testing/methods , Sensitivity and Specificity , Nucleocapsid Proteins/genetics , Real-Time Polymerase Chain Reaction/methods , Immunoassay/methods
8.
Diagnostics (Basel) ; 12(11)2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2123544

ABSTRACT

In this study, we evaluated the performance of the in-house developed rRT-PCR assay for SARS-CoV-2 RNA targeting the envelope (E) and nucleocapsid (N) genes with internal control as human RNase P. A total of 50 positive samples and 50 negative samples of SARS-CoV-2 were tested by a reference kit at site 1 and a subset (30 positives and 16 negatives) of these samples are tested blindly at site 2. The limit of detection (LoD) was calculated by using a replication-deficient complete SARS-CoV-2 genome and known copy numbers, where Pseudo-virus samples were used to evaluate accuracy. On site 1, among the 50 SARS-CoV-2 positive samples 24, 18, and eight samples showed high (Ct < 26), moderate (26 < Ct ≤ 32), and low (32 < Ct ≤ 38) viral load, respectively, whereas in site 2, out of 30 SARS-CoV-2 positive samples, high, moderate, and low viral loads were found in each of the 10 samples. However, SARS-CoV-2 was not detected in the negative sample. So, in-house assays at both sites showed 100% sensitivity and specificity with no difference observed between RT PCR machines. The Ct values of the in-house kit had a very good correlation with the reference kits. LoD was determined as 100 copies/mL. It also displayed 100% accuracy in mutant and wild-type SARS-CoV-2 virus. This Bangasure™ RT-PCR kit shows excellent performance in detecting SARS-CoV-2 viral RNA compared to commercially imported CE-IVD marked FDA authorized kits.

9.
Int J Infect Dis ; 111: 233-241, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-2113775

ABSTRACT

OBJECTIVES: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has had a significant impact on global public health systems, making nucleic acid detection an important tool in epidemic prevention and control. Detection kits based on real-time reverse transcriptase PCR (rRT-PCR) have been used widely in clinics, but their analytical sensitivity (limit of detection, LOD) remains controversial. Moreover, there is limited research evaluating the analytical sensitivity of other molecular detection kits. METHODS: In this study, armored ribonucleic acid reference materials developed in-house were used to evaluate the analytical sensitivity of SARS-CoV-2 detection kits approved by the National Medical Products Administration. These were based on rRT-PCR and other molecular detection assays. RESULTS: The percentage retesting required with rRT-PCR kits was as follows: 0%, 7.69%, 15.38%, and 23.08% for samples with concentrations ranging from 50 000 to 781 copies/ml. In total, 93% of rRT-PCR kits had a LOD <1000 copies/ml. Only one kit had an LOD >1000 copies/ml. The LOD of other molecular detection kits ranged from 68 to 2264 copies/ml. CONCLUSIONS: The study findings can help pharmaceutical companies optimize and improve detection kits, guide laboratories in selecting kits, and assist medical workers in their daily work.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Reagent Kits, Diagnostic , Sensitivity and Specificity
10.
Front Med (Lausanne) ; 9: 1027586, 2022.
Article in English | MEDLINE | ID: covidwho-2109790

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) has resulted in high hospitalization rates worldwide. Acute kidney injury (AKI) in patients hospitalized for COVID-19 is frequent and associated with disease severity and poor outcome. The aim of this study was to investigate the incidence of kidney replacement therapy (KRT) in critically ill patients with COVID-19 and its implication on outcome. Methods: We retrospectively analyzed all COVID-19 patients admitted to the Department of Intensive Care Medicine at the University Medical Center Hamburg-Eppendorf (Germany) between 1 March 2020 and 31 July 2021. Demographics, clinical parameters, type of organ support, length of intensive care unit (ICU) stay, mortality and severity scores were assessed. Results: Three-hundred critically ill patients with COVID-19 were included. The median age of the study population was 61 (IQR 51-71) years and 66% (n = 198) were male. 73% (n = 219) of patients required invasive mechanical ventilation. Overall, 68% (n = 204) of patients suffered from acute respiratory distress syndrome and 30% (n = 91) required extracorporeal membrane oxygenation (ECMO). We found that 46% (n = 139) of patients required KRT. Septic shock (OR 11.818, 95% CI: 5.941-23.506, p < 0.001), higher simplified acute physiology scores (SAPS II) (OR 1.048, 95% CI: 1.014-1.084, p = 0.006) and vasopressor therapy (OR 5.475, 95% CI: 1.127-26.589, p = 0.035) were independently associated with the initiation of KRT. 61% (n = 85) of patients with and 18% (n = 29) without KRT died in the ICU (p < 0.001). Cox regression found that KRT was independently associated with mortality (HR 2.075, 95% CI: 1.342-3.208, p = 0.001) after adjusting for confounders. Conclusion: Critically ill patients with COVID-19 are at high risk of acute kidney injury with about half of patients requiring KRT. The initiation of KRT was associated with high mortality.

11.
Indian J Pathol Microbiol ; 65(4): 907-910, 2022.
Article in English | MEDLINE | ID: covidwho-2100023

ABSTRACT

Context: COVID-19 caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an emerging pandemic that is rapidly spreading with more than 114 million confirmed cases and 2.5 million deaths by far. Nasopharyngeal swab (NPS) in VTM has been used as the gold standard respiratory specimen for SARS-CoV-2 reverse-transcriptase real-time PCR (rRT-PCR) tests. But now the virus can also be detected in other clinical specimens like bronchoalveolar lavage, sputum, saliva, throat swab, blood, and stool specimens. Aims: The aim of this study was to determine the diagnostic potential of saliva as a sample in comparison to NPS for detection of SARS-CoV-2 by rRT-PCR. Settings and Design: A cross-sectional study was conducted among 256 paired samples (NPS and Saliva) received in the Department of Microbiology, SMS Medical College, Jaipur over a period of 2 months. Methods and Material: NPS from individuals were collected in a sterile tube containing Viral Transport Medium™. Before swab collection, whole saliva was collected by spitting from the suspected patient into a sterile container. Both were stored at room temperature and transferred to the diagnostic laboratory within four hours of collection where extraction was done using Perkin Elmer chemagic extractor and rRT- PCR was performed using NIV, Pune mastermix. Results: Sensitivity, specificity, PPV, and NPV of RT-PCR for the diagnosis of COVID-19 in saliva were 84.26%, 100%, 100%, and 54.05%, respectively. The accuracy of detection of COVID-19 by saliva samples compared to the routinely used NPS samples (considered as the standard reference) for RT PCR was 86.72%. Conclusions: Our results show that saliva as a reliable sample type for SARS-CoV-2 detection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Reverse Transcriptase Polymerase Chain Reaction , COVID-19/diagnosis , Saliva , Cross-Sectional Studies , Nasopharynx , India , Specimen Handling/methods
12.
Vaccines (Basel) ; 10(9)2022 Aug 25.
Article in English | MEDLINE | ID: covidwho-2006245

ABSTRACT

Patients with CKD on RRT are at high risk for severe disease and mortality in COVID-19 disease. We decided to conduct an observational prospective study to evaluate antibody response after vaccination for COVID-19 in a cohort of 210 adult patients on RRT (148 on HD; 20 on PD; and 42 kidney transplant recipients). Blood samples were taken before and 4 weeks after vaccination. Antibody levels were evaluated with CLIA immunoassay testing for IgG anti-trimeric spike protein of SARS-CoV-2. A positive antibody titer was present in 89.9% of HD patients, 90% of PD patients, and 52.4% of kidney transplant recipients. Non-responders were more frequent among patients on immunosuppressive therapy. Mycophenolate use in kidney transplant patients was associated with lower antibody response. The median antibody titer was 626 (228-1480) BAU/mL; higher in younger patients and those previously exposed to the virus and lower in HD patients with neoplasms and/or on immunosuppressive therapy. Only two patients developed COVID-19 in the observation period: they both had mild disease and antibody titers lower than 1000 BAU/mL. Our data show a valid response to COVID-19 mRNA vaccination in HD and PD patients and a reduced response in kidney transplant recipients. Mycophenolate was the most relevant factor associated with low response.

13.
Biotechnol Adv ; 60: 108009, 2022 11.
Article in English | MEDLINE | ID: covidwho-1966388

ABSTRACT

Acceleration of chemical reactions by the enzymes optimized using protein engineering represents one of the key pillars of the contribution of biotechnology towards sustainability. Tunnels and channels of enzymes with buried active sites enable the exchange of ligands, ions, and water molecules between the outer environment and active site pockets. The efficient exchange of ligands is a fundamental process of biocatalysis. Therefore, enzymes have evolved a wide range of mechanisms for repetitive conformational changes that enable periodic opening and closing. Protein-ligand interactions are traditionally studied by molecular docking, whereas molecular dynamics is the method of choice for studying conformational changes and ligand transport. However, computational demands make molecular dynamics impractical for screening purposes. Thus, several approximative methods have been recently developed to study interactions between a protein and ligand during the ligand transport process. Apart from identifying the best binding modes, these methods also provide information on the energetics of the transport and identify problematic regions limiting the ligand passage. These methods use approximations to simulate binding or unbinding events rapidly (calculation times from minutes to hours) and provide energy profiles that can be used to rank ligands or pathways. Here we provide a critical comparison of available methods, showcase their results on sample systems, discuss their practical applications in molecular biotechnologies and outline possible future developments.


Subject(s)
Biotechnology , Molecular Dynamics Simulation , Binding Sites , Ligands , Molecular Docking Simulation , Protein Binding , Water
14.
Arch Microbiol ; 204(8): 502, 2022 Jul 19.
Article in English | MEDLINE | ID: covidwho-1935760

ABSTRACT

Fast and reliable testing for the COVID 19 infection is the need of the hour for the development of effective and reliable tools and assays. However, it is difficult to find the performance relativity among all these tests which are poorly understood. In this study, we aimed to evaluate the two different platforms where we determine the difference of sensitivity and specificity between the fully automated analyzer (Roche Diagnostics Cobas 6800 SARS-CoV-2 test) under FDA Emergency Use Authorization (EUA) and the laboratory designed test (SARS-CoV-2 rRT-PCR) based on the protocol developed by ICMR (Indian Council for Medical Research). The study was conducted for individual samples. We performed our study with two different approaches, first with validation method consisting of 188 samples (2 batches) on cobas 6800 instrument (Roche Molecular Systems, Branchburg, NJ) soon after we received US FDA EUA on 1 June 2021, all these samples were tested earlier with laboratory designed tests on 25th and 26th May 2021. Over all agreement between the two tests is of 88% and the coefficient of agreement between the two testing platform Cohen'sκ coefficient was found to be 0.76 (95% CI, 2.5897-13.4103) suggesting the substantial agreement between the two platforms. However, in some of the cases, both tests have shown a little disagreement. An overall discordance rate between two systems was found 11.1%. The difference may be due to the limit of detection, variation in the sequences of the primer design or may be due to other factors depicting the importance of comparing the two platforms used in the testing for SARS-CoV-2. Second approach includes head to head evaluation which comprises 1631 samples showed overall agreement of 99% and kappa value of 0.98. These results showed that cobas is effective and reliable assay for the detection of SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques/methods , Humans , Molecular Diagnostic Techniques/methods , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
15.
J Fungi (Basel) ; 8(7)2022 Jun 28.
Article in English | MEDLINE | ID: covidwho-1911435

ABSTRACT

Isavuconazole is a broad-spectrum antifungal drug recently approved as a first-line treatment for invasive aspergillosis and as a first or alternative treatment for mucormycosis. The purpose of this review was to report and discuss the use of isavuconazole for the treatment of COVID-19-associated aspergillosis (CAPA), and COVID-19-associated mucormycosis (CAM). Among all studies which reported treatment of CAPA, approximately 10% of patients were reportedly treated with isavuconazole. Considering 14 identified studies that reported the use of isavuconazole for CAPA, isavuconazole was used in 40% of patients (95 of 235 treated patients), being first-line monotherapy in over half of them. We identified six studies that reported isavuconazole use in CAM, either alone or in combination therapy. Overall, isavuconazole was used as therapy in 13% of treated CAM patients, frequently as combination or sequential therapy. The use of isavuconazole in CAPA and CAM is complicated by the challenge of achieving adequate exposure in COVID-19 patients who are frequently obese and hospitalized in the ICU with concomitant renal replacement therapy (RRT) or extracorporeal membrane oxygenation (ECMO). The presence of data on high efficacy in the treatment of aspergillosis, lower potential for drug-drug interactions (DDIs) and for subtherapeutic levels, and no risk of QT prolongation compared to other mold-active azoles, better safety profile than voriconazole, and the possibility of using an intravenous formulation in the case of renal failure are the advantages of using isavuconazole in this setting.

16.
J Aerosol Sci ; 165: 106038, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1907239

ABSTRACT

The B.1.617.2 (Delta) variant of SARS-CoV-2 emerged in India in October of 2020 and spread widely to over 145 countries, comprising over 99% of genome sequence-confirmed virus in COVID-19 cases of the United States (US) by September 2021. The rise in COVID-19 cases due to the Delta variant coincided with a return to in-person school attendance, straining COVID-19 mitigation plans implemented by educational institutions. Some plans required sick students to self-isolate off-campus, resulting in an unintended consequence: exposure of co-inhabitants of dwellings used by the sick person during isolation. We assessed air and surface samples collected from the bedroom of a self-isolating university student with mild COVID-19 for the presence of SARS-CoV-2. That virus' RNA was detected by real-time reverse-transcription quantitative polymerase chain reaction (rRT-qPCR) in air samples from both an isolation bedroom and a distal, non-isolation room of the same dwelling. SARS-CoV-2 was detected and viable virus was isolated in cell cultures from aerosol samples as well as from the surface of a mobile phone. Genomic sequencing revealed that the virus was a Delta variant SARS-CoV-2 strain. Taken together, the results of this work confirm the presence of viable SARS-CoV-2 within a residential living space of a person with COVID-19 and show potential for transportation of virus-laden aerosols beyond a designated isolation suite to other areas of a single-family home.

17.
J Public Health Afr ; 13(1): 2163, 2022 May 24.
Article in English | MEDLINE | ID: covidwho-1903636

ABSTRACT

Molecular diagnosis of COVID-19 is critical to the control of the pandemic, which is a major threat to global health. Several molecular tests have been validated by WHO, but would require operational evaluation in the field to ensure their interoperability in diagnosis. In order to ensure field interoperability in molecular assays for detection of SARS-CoV-2 RNA, we evaluated the diagnostic concordance of SARS-CoV-2 between an automated (Abbott) and a manual (DaAn gene) realtime PCR (rRT-PCR), two commonly used assays in Africa. A comparative study was conducted on 287 nasopharyngeal specimens at the Chantal BIYA International Reference Centre (CIRCB) in Yaounde- Cameroon. Samples were tested in parallel with Abbott and DaAn gene rRT-PCR, and performance characteristics were evaluated by Cohen's coefficient and Spearman's correlation. A total of 273 participants [median age (IQR) 36 (26-46) years] and 14 EQA specimens were included in the study. Positivity was on 30.0% (86/287) Abbott and 37.6% (108/287) DaAn gene. Overall agreement was 82.6% (237/287), with k=0.82 (95%CI: 0.777-0.863), indicating an excellent diagnostic agreement. The positive and negative agreement was 66.67% (72/108) and 92.18 % (165/179) respectively. Regarding Viral Load (VL), positive agreement was 100% for samples with high VLs (CT<20). Among positive SARS-CoV- 2 cases, the mean difference in Cycle Threshold (CT) for the manual and Cycle Number (CN) for the automated was 6.75±0.3. The excellent agreement (>80%) between the Abbott and DaAn gene rRTPCR platforms supports interoperability between the two assays. Discordance occurs at low-VL, thus underscoring these tools as efficient weapons in limiting SARS-CoV-2 community transmission.

18.
Clin Chim Acta ; 533: 42-47, 2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1885664

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID19) caused by the new severe acute respiratory syndrome coronavirus 2 (SARSCoV2) is a global public health emergency. Age and gender are two important factors related to the risk and outcome of various diseases. Cycle threshold (Ct) value is believed to have relation with age and gender. OBJECTIVE: This study has been conducted to investigates the association between SARS-CoV-2 cycle threshold to age and gender of COVID-19 patients, to investigate whether the population-wide change of SARSCoV2 RTPCR Ct value over time is corelated to the number of new COVID19 cases and to investigate the dynamic of RdRp and N genes. METHODS: 72,811 individuals from second wave of COVID19, were observed in current study at Pure Health Lab, Mafraq Hospital, Abu Dhabi, UAE. RESULTS: 15,201/72,811 (21 %) positivity was observed. COVID-19 were more prevalent in males (59.35%) as compared to female (40.65%). The Positivity rate were significantly higher in Male than in Female cases (p-Value = 0.04). The Ct values for both targets of all the samples were ranged from 4.57 to 29.73. Longitudinal analysis showed significant increased during the study period from starting to end as were hypothesized. Interestingly, both the targets (RdRp and N) were present in age < 1 year. Which may indicate that mutated strains are not prevalent in children's < 1 year. CONCLUSION: There was no statistically significant difference in viral loads in between age-groups. Males were tending to higher viral load compared to females. The findings have implications for preventive strategies.


Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins/genetics , SARS-CoV-2 , Age Distribution , Child , Female , Humans , Male , RNA, Viral , RNA-Dependent RNA Polymerase , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Sex Characteristics
19.
Front Med (Lausanne) ; 9: 796109, 2022.
Article in English | MEDLINE | ID: covidwho-1847182

ABSTRACT

Background: Dysregulation of complement system is thought to be a major player in development of multi-organ damage and adverse outcomes in patients with coronavirus disease 2019 (COVID-19). This study aimed to examine associations between complement system activity and development of severe acute kidney injury (AKI) among hospitalized COVID-19 patients. Materials and Methods: In this multicenter, international study, complement as well as inflammatory and thrombotic parameters were analyzed in COVID-19 patients requiring hospitalization at one US and two Hungarian centers. The primary endpoint was development of severe AKI defined by KDIGO stage 2+3 criteria, while the secondary endpoint was need for renal replacement therapy (RRT). Complement markers with significant associations with endpoints were then correlated with a panel of inflammatory and thrombotic biomarkers and assessed for independent association with outcome measures using logistic regression. Results: A total of 131 hospitalized COVID-19 patients (median age 66 [IQR, 54-75] years; 54.2% males) were enrolled, 33 from the US, and 98 from Hungary. There was a greater prevalence of complement over-activation and consumption in those who developed severe AKI and need for RRT during hospitalization. C3a/C3 ratio was increased in groups developing severe AKI (3.29 vs. 1.71; p < 0.001) and requiring RRT (3.42 vs. 1.79; p < 0.001) in each cohort. Decrease in alternative and classical pathway activity, and consumption of C4 below reference range, as well as elevation of complement activation marker C3a above the normal was more common in patients progressing to severe AKI. In the Hungarian cohort, each standard deviation increase in C3a (SD = 210.1) was independently associated with 89.7% increased odds of developing severe AKI (95% CI, 7.6-234.5%). Complement was extensively correlated with an array of inflammatory biomarkers and a prothrombotic state. Conclusion: Consumption and dysregulation of complement system is associated with development of severe AKI in COVID-19 patients and could represent a promising therapeutic target for reducing thrombotic microangiopathy in SARS-CoV-2 infection.

20.
Artif Organs ; 46(9): 1847-1855, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1819877

ABSTRACT

BACKGROUND: Severe COVID-19 can necessitate multiple organ support including veno-venous extracorporeal membrane oxygenation (vvECMO) and renal replacement therapy. The therapy can be complicated by venous thromboembolism due to COVID-19-related hypercoagulability, thus restricting vascular access beyond the vvECMO cannula. Although continuous renal replacement therapy can be performed via a vvECMO circuit, studies addressing sustained low-efficiency dialysis (SLED) integration into vvECMO circuits are scarce. Here we address the lack of evidence by evaluating feasibility of SLED integration into vvECMO circuits. METHODS: Retrospective cohort study on nine critically ill COVID-19 patients, treated with integrated ECMO-SLED on a single intensive care unit at a tertiary healthcare facility between December 2020 and November 2021. The SLED circuits were established between the accessory arterial oxygenator outlets of a double-oxygenator vvECMO setup. Data on filter survival, quality of dialysis, and volume management were collected and compared with an internal control group receiving single SLED. RESULTS: This study demonstrates general feasibility of SLED integration into existing vvECMO circuits. Filter lifespans of ECMO-SLED compared with single SLED are significantly prolonged (median 18.3 h vs. 10.3 h, p < 0.01). ECMO-SLED treatment is furthermore able to sufficiently normalize creatinine, blood urea nitrogen, and serum sodium, and allows for adequate ultrafiltration rates. CONCLUSIONS: We can show that ECMO-SLED is practical, safe, results in adequate dialysis quality and enables sufficient electrolyte and volume management. Our data indicate that SLED devices can serve as potential alternative to continuous-veno-venous-hemodialysis for integration in vvECMO circuits.


Subject(s)
Acute Kidney Injury , COVID-19 , Extracorporeal Membrane Oxygenation , Hybrid Renal Replacement Therapy , Acute Kidney Injury/therapy , COVID-19/therapy , Critical Illness/therapy , Extracorporeal Membrane Oxygenation/methods , Feasibility Studies , Humans , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL